Project # 1	
Project name	Advanced Rare Isotope Laboratory (ARIEL)
Collaborators	U. of Alberta, U. of British Columbia, U. of Calgary, Carleton U., U. of Guelph, U. Laval, U. of Manitoba, McGill U., McMaster U., U. de Montréal, U. of Northern British Columbia, Queen's U., U. of Regina, Saint Mary's U., U. de Sherbrooke, Simon Fraser U., U. of Toronto, U. of Victoria, Western U., U. of Winnipeg, York U.
Project description	The Advanced Rare Isotope Laboratory (ARIEL) will greatly expand the scientific capabilities of TRIUMF's rare isotope program by providing more exotic isotope species with very high intensities. This will be achieved with two new production target stations producing rare isotope beams (RIBs) in parallel to the existing station at ISAC. Together, these three stations will enable the full exploitation of the numerous existing experimental facilities at ISAC, including those for medical isotope research, nuclear astrophysics, material studies, fundamental nuclear studies, and searches for new physics beyond the standard model.
	ARIEL-I: The first phase of the ARIEL project, ARIEL-I, consisted of the ARIEL building (which houses the target stations and associated infrastructure, such as hot cells and chemistry laboratories), the low energy beam-delivery infrastructure, the SRF electron linac (e-linac), as well as the tunnel from the driver accelerator building to the ARIEL targets. ARIEL-I was completed in 2014 and successfully demonstrated a 24MeV electron beam from the e-linac.
	Ultimately, the e-linac will deliver up to 30-35 MeV, 100kW cw electron beam as a driver for photo-fission of actinide targets and photoproduction on other targets to produce RIBs for nuclear physics, materials science, and life sciences research. The electron beam is generated in a 300 kV DC thermionic gun, bunched in a room temperature 1.3 GHz buncher cavity, and accelerated by three 1.3 GHz superconducting cavities. One of these cavities is housed in the injector cryomodule whose energy gain is 10MeV, and the others are housed in accelerator cryomodules with two cavities for an energy gain of 20 MeV. Future e-linac upgrades could include a second accelerator cryomodule (boosting the energy to 50-75 MeV) and a recirculation arc for either energy recovery (ERL) or energy doubling (RLA) operation.
	CANREB: The CFI-funded CANadian Rare-isotope facility with Electron Beam ion source (CANREB) project will construct critical RIB preparation and delivery infrastructure to facilitate the delivery of clean, high quality RIBs to a variety of experimental stations in the ISAC facility. CANREB consists of a high-resolution magnetic spectrometer (HRS), a radiofrequency quadrupole (RFQ) beam cooler and buncher, an Electron Beam Ion Source (EBIS) for charge breeding the rare isotope beam, and a Nier-type spectrometer. RIBs from ARIEL pass through the HRS, which separates out the nuclide of interest from isobaric contaminants. The selected beam is cooled and bunched in the RFQ beam cooler and buncher, after which it is sent to the EBIS for charge breeding. The charge-bred beam is filtered by charge state using the Nier spectrometer and sent to the ISAC facility for post-acceleration. Starting in 2019, the CANREB charge breeder, consisting of the RFQ cooler and buncher, EBIS, and Nier spectrometer, also will be used to charge breed RIBs produced in the ISAC target for acceleration in the ISAC heavy ion accelerator chain which is limited to accelerating ions with mass-to-charge ratio below 30. CANREB is effectively

	ARIEL-II: The second major phase of the ARIEL project, ARIEL-II, will enable science
	delivery in several stages. The overall ARIEL-II program's goal is to triple TRIUMF's output
	of RIBs (from 3000 hours/year to 9000 hours/year) destined for the ISAC-I/II experimental
	facilities by building two new target stations - one driven by the new e-linac and one
	driven from a new beamline (BL4N) originating from the cyclotron. ARIEL-II's objectives
	are to build the target stations, driver beamlines, RIB lines, scientific instruments, hot
	cells, laboratories, safety systems and technical infrastructure needed to accomplish this
	goal.
	The ARIEL-II program is sequenced into four phases, each with a scientific deliverable, so
	that I RIDIVIE's users won't have to wait until the end of the full program to get scientific
	results. Phases 1, 2 and 4 are in the planning/concepting stage while Phase 3 is in the
	and 3.
	 Phase 1: RIBs from the electron target station to ISAC's Beta-NMR experiment
	 Phase 2: RIBs from photo-fission at the electron target station
	 Phase 3: Beamlines to inter-connect the CANREB equipment
	 Phase 4: RIBs from the proton target station to an ISAC experimental station
	As shown below, ARIEL-II is a program made of numerous subprojects. It is the ARIEL-II
	Project Management Office's (PMO's) role to coordinate the various projects within each
	phase. This includes management of the CANREB and Symbiotic Target Station projects.
	Symbiotic Target Station: The installation of a symbiotic target in the beam dump of the
	ARIEL proton target station will enable the production of medical isotopes such as ²²⁵ Ac
	for targeted radionuclide cancer therapy. The project includes the target infrastructure in
	the beam dump, a pneumatic transfer system from the target station to the hot cells, as
	well as a processing and packaging hot cell for the medical isotope targets. The Symbiotic
	Target Station is effectively integrated into Phase 4 of ARIEL-II.
Project value	 ARIEL-I: \$63M materials (completed)
	 ARIEL-II: \$37.6M materials (for TRIUMF resources, see resource profile below)
	 CANREB (part of ARIEL-II Phase 3): \$4.2M materials
	 Symbiotic Target Station (part of ARIEL-II Phase 4): \$9.9M materials
Program team	The top-level WB structure of the ARIEL program complex is shown in the figure below.
	The program includes the ARIEL-II project with various WBS elements as well as CANREB
	and the Symbiotic Target Station project, is managed by the ARIEL Project Management
	Office. Overall Project Leadership lies with R. Kruecken and O. Kester. The PMO is led by
	the Project Engineer, E. Guetre. The e-linac commissioning and the e-linac beam dump
	project generally belong to the ARIEL program complex but are managed independently.
	Over 150 TRIUME staff from across the whole laboratory are working on ARIEL with peak
	months requiring 70-80 FTE.

	ARIEL-II Program Leaders	
	Reiner Kruecken / Oliver Kester	
	Project Engineer Eric Guetre Bob Laxdal CANREB Project	
	Leader Leader Integrator	
	Grants Accountant Francis Pau Project Coordinator Mark Keyzer Ops & Training Violeta Toma	
	P353 Target Stations Alex Gottberg P424 Target Hall Infrastructure Grant Minor P354 Separator & RIB Transport Marco Marchetto P355 Laboratories P355 Laboratories P355 Laboratories P179 BL4N P358 TI P363 ARIEL 1.5 P310 CANREB Kill Transport Marco Marchetto Peter Kunz Yi-Nong Rao F. Mammarella E. Guetre Reiner Kruecken	
	Norman Muller Bill Paley David Wager Anders Mios Yuri Bylinsky Bill Richert Doug Preddy Friedheim Ames WBS 1 WBS 0 WBS 2 WBS 3 WBS 5 WBS 7 WBS 9	
	P353/P360 VECC P405 Therapeutic Isotopes P352 e-Linac Commissioning P374 e-Linac ENDT/dump Bob Laxdal Content is folded into P333 and P424 P352 e-Linac S. Kosceleniak FUT / dump S. Kosceleniak WBS 11 WBS 12 P352 and P374 are part of the ABIL complex	
Project timeline	 ARIEL-I: 2010-2014 	
	 ARIEL-II: 2017-2023 	
	CANREB: 2014-2019	
Other	 Symbiolic Target Station: 2018-2023 Project oversight for TPULINE's flagship project is provided by the APIEL Scientific Steering 	
information	Committee comprised of international experts [D_Karlen (IIVic) W_Eischer (BNI)]	
	Lettry (CERN), P. Manitca (FRIB), P. Ostroumov (FRIB), F. Pilat (ORNL)], which holds 2-day	
	reviews every 6 months and reports to the TRIUMF Board.	
	ARIEL will capitalize on key opportunities:	
	Full multi-user capability:	
	With ARIEL, TRIUMF's rare isotope production will triple, with three independent RIBs	
	taking the research program of our 18 world-class experiments to the next level. 9000	
	hours of rare isotope beams enable critical studies of nuclear reactions in stars and	
	searches for new forces in nature that require extended hours of beam time.	
	Expanded isotope reach:	
	The new electron linac and advances in isotope target and ion source technologies will	
	enable access to new isotopes currently out of reach of our existing Isotope Separation	
	and Accelerator (ISAC) facility. This will enable the study of very short-lived isotopes	
	critical for our understanding of the origin of the elements.	
	A beta-detected Nuclear Magnetic Resonance (bNMR) user program:	
	ARIEL will enable the growth of the materials characterization program using rare	
	isotopes from a boutique technique to a world-leading user program that enables the	
	development of new functional quantum materials, next generation batteries, and the	
	understanding of biomolecules.	
	Symbiotic medical isotope production:	
	A symbiotic isotope production target behind an ARIEL science target will facilitate the	
	development of critical medical isotopes for next generation targeted radionuclide	
	therapies for metastatic cancers.	

Project # 2		
Project name	Institute for Advanced Medical Isotopes (IAMI)	
Collaborators	TRIUMF, U. of British Columbia, BC Cancer	
Project description	The Institute for Advanced Medical Isotopes (IAMI) will be a research hub and facility at TRIUMF built around a TR-24 cyclotron that will enhance TRIUMF's Life Sciences research and radiopharmaceutical production program, and ensure an ongoing, reliable, and secure isotope supply for British Columbia. By virtue of its location at TRIUMF, IAMI will be able to serve as a conduit for isotopes using TRIUMF's other accelerators; solidifying the province's status as a world leader in isotope-based life sciences research and radiopharmaceutical development. IAMI is primed to produce and develop isotopes with applications to both life-saving treatments and research into some of the most compelling questions in life sciences and medicine. IAMI will foster innovation in a wide range of fields, including radiopharmaceutical development, accelerator research, and advanced isotope development.	
	The IAMI facility will be a 2,500 m ² (~25,000 ft ²), 5-level building housing a TR24 cyclotron, 6 radiopharmaceutical labs, a non-radioactive chemistry lab, quality control labs, support space, and office space. The radiopharmaceutical labs can be configured as either a Good Manufacturing Practice-compliant space, or not, depending on the demand for each type of space.	
	 IAMI will host a multifaceted research, development, and commercialization community based at TRIUMF. It will have five program thrusts: 1. <i>Isotope Security:</i> ^{99m}Tc production for the province of BC (up to 86,000 doses annually) and ¹⁸F production to support the BC Cancer clinical imaging program (up to 5,000 doses annually), 2. <i>Radiotracer Development:</i> Support of internal and third-party requests including the use of isotopes as a drug development tool, 3. <i>Cancer Therapy:</i> Processing of theranostic and therapeutic agents produced at TRIUMF, 	
	4. Clinical Imaging: ¹⁸ F & ¹¹ C tracer production to support the brain imaging program at the UBC-based David Mowafaghian Centre for Brain Health (DMCBH) (up to 5 times per day), and	
	5. <i>Radiopharmaceutical Development:</i> Development of partnerships with industry to establish BC-based operations for clinical trials of radiopharmaceuticals for diagnosing and managing Alzheimer's disease, dementia, prostate cancer, etc.	
Project value	 TR24: \$6.1M IAMI building: \$31.8M 	
Project team	The project organization is shown below. The first stage of the project is facility construction. The project sponsor is J. Bagger, TRIUMF Director. The project leaders are Paul Schaffer and Ken Buckley. The project manager is Anil Vargis, assisted by the project engineer Navid Zolfaghari. As the project progresses towards construction of the building, additional team members will be added in the roles of Construction Supervisor, Safety Supervisor, and Project Administrator. This team consults regularly with the Life Sciences division	

	members to ensure user requirements are met. An architectural firm is currently onboard for the design and preparation of construction documents. TRIUMF Innovations is liaising with potential interested commercial parties. The lead researcher of IAMI is Paul Schaffer. In the design phase, approximately 20 staff and researchers are assisting with the design requirements for the facility. Once in full operation, IAMI will employ just over 50 staff and will train at least 75 HQP over the first five years.	
	Project Sponsor Jon Bagger - TRIUMF Director	 Province of BC Government of Canada Funding Institutions – TRIUMF, UBC, BC Cancer
	Project Paul Schaffer - Ass Ken Buckley - Deputy Ass	Proponent/s ociate Laboratory Director ociate Laboratory Director, IAMI
	Project Man	ager – Anil Vargis
	Construction Safety Supervisor - TBD Supervisor - TB	Project Engineer – Navid D Zolfaghari Project Admin - TBD
Project timeline	 Significant Milestones: Completed: A schematic design for the IAMI fac The TR-24 cyclotron was purchased Incorporated and delivered to TRIU Provincial funding for IAMI was obt Pending: Site Preparation complete Jan 2019 Design complete Mar 2019 Construction start June 2019 Substantial Completion Mar 2020 Commissioning complete Oct 2020 	ility was completed in 2016. from Advanced Cyclotron Systems MF in March 2017. ained in 2017, Federal funding in 2018.
Other information	IAMI will capitalize on five key opportur Securing isotope supplies: IAMI promis medical isotopes, including critical imag local health care system, and thereby pe in global markets.	nities: es to secure a supply of several important ging isotopes such as ^{99m} Tc and ¹⁸ F, for the positioning Canadian technology as a player
	Accelerating global drug development: rely on highly sought-after isotope-base will provide a unique infrastructure for r as a key player in this space.	Some early-stage drug development trials d radiotracers to gauge drug efficacy. IAMI adiotracer production, positioning Canada
	Developing next-generation cancer radionuclide therapies for metastatic ca improving health outcomes for Canad	therapies: By developing targeted ancers, IAMI researchers will contribute to ians, place Canada at the center of this

promising, fast-growing field, and allow Canadian access to radionuclide therapy markets.
Improving health outcomes for patients: IAMI will supply additional isotopes to the TRIUMF-UBC neuroimaging program at the Djavad Mowafaghian Centre for Brain Health and bring the power of personalized medicine to more patients who suffer from addiction, dementia, and other mental health issues. It will also boost the supply and diversity of important positron-emission tomography (PET) isotopes for BC Cancer patients, enabling thousands of PET scans annually at UBC and BC Cancer sites.
Attracting industry partnerships and investment to Canada: IAMI will provide certified infrastructure for isotope production, enabling the development of new diagnostic and therapeutic substances by industry partners. The Institute will also establish a powerful training platform — at the interface between science and business — for young researchers.

Project	#	3
---------	---	---

Project name	ATLAS detector upgrades and Tier-1 Data Centre
Collaborator	ATLAS Canada (direct contributors, co-applicants): D. Gingrich, J. Pinfold (Alberta), A. Bellerive, D. Gillberg, J. Heilman, T. Koffas, G. Oakham, M. Vincter (Carleton), F. Corriveau, S. Robertson, B. Vachon, A. Warburton (McGill), J-F. Arguin, G. Azuelos, J-P. Martin, C. Leroy (Montreal), D. O'Neil, B. Stelzer, M. Vetterli (SFU), P. Krieger, R. Orr, P. Savard, P. Sinervo, R. Teuscher, W. Trischuk (Toronto), N. Hessey, O. Stelzer-Chilton, R. Tafirout, I. Trigger (TRIUMF), D. Axen, C. Gay, A. Lister (UBC), J. Albert, R. Keeler, R. Kowalewski, M. Lefebvre, R. McPherson, R. Sobie (Victoria), W. Taylor (York)
Project	Phase-I upgrades: TRIUMF is active in two Phase-I upgrade projects to be
description	 Installed during the second Long Shutdown, planned for 2019-2020: The LAr calorimeter upgrade increases the granularity of signals sent to the L1 trigger. TRIUMF and U. of Victoria designed, prototyped, and are building a new front-end-crate base-plane and trigger digitizer board for the Canadian-built Hadronic EndCap Calorimeter. Pre-production, acceptance tests and characterization of base-planes have been successfully carried out. Full production has started, and quality assurance tests will be performed jointly at the two sites. The New Small Wheel (NSW) will allow ATLAS to keep the forward muon trigger momentum threshold low enough for electroweak signatures. TRIUMF and five Canadian Universities (Carleton, McGill, Montreal, SFU, Victoria) are building small-strip Thin Gap Chambers (STGC) which will allow fast and precise online triggering. Canada is building one quarter of the chambers. TRIUMF is responsible for coating the very large cathodes with a resistive graphite-resin mixture, and for precision assembly of STGC chamber half-gaps; one third of these have already been completed. TRIUMF personnel carry out quality control for the full international collaboration at the main cathode board supplier at Triangle Labs in Nevada. Several sTGC quadruplet assemblies have been completed by Carleton and shipped to McGill for cosmic ray testing and to CERN for tests with beam and assembly into wedges. In parallel, detector assembly into detector wedges has started at CERN. Phase-II upgrades: TRIUMF is taking part in the Phase-II LAr electronics and Inner Tracker (ITK) upgrade projects to be installed during the third long shutdown (2024-26). During the HL-LHC running, the LHC will reach instantaneous luminosities 5-7 times the original design value. New radiation-hard, low-power, and high-density front-end electronics are required for the LAr detectors. The design challenges are to digitize the data as early as possible and deliver the information

	required for the ITk endcap at three production sites: two in Vancouver
	(TRIUMF, SFU) and one in Toronto. Each of these three sites will produce
	about 500 modules. The ITk silicon sensor and module testing is a joint
	responsibility of six Canadian Universities (Carleton, Toronto, Montreal, York,
	SFU. UBC) and TRIUMF. During the final step of the Canadian production, the
	modules will be placed on carbon support structures, called petals, at
	TRIUME. All of the essential infrastructure has been acquired and a high
	precision gantry has been commissioned to glue readout chins on module
	hybrids. Work is ongoing to fully automate the placement of modules on
	netal support structures
	ATI AS Tier-1 : TRIUME is operating Canada's Tier-1 LHC data centre for the ATLAS
	experiment. It is a large-scale data-intensive facility operated 24x7 in accordance
	with the MOU with CERN. It provides dedicated resources for the storage of the
	raw and secondary datasets, and compute capacity for data processing
	simulations, and physics groups analysis activities in a secure environment
	During the last decade, the centre has been physically located at TRILIME In
	2018 the services, compute and storage canacities were being been shifted to
	the new Compute Canada data centre located at SELL TRILIME personnal will
	continue to be responsible for its operations
Project value	 ATLAS Phase 1 ungrades: \$7.2M
	▲ ATLAS Phase 2 upgrades: \$7.200
	 ATLAS Tier-1 Data Centre: \$28.1M
Project team	Tier-1: M Vetterli (SELL/TRILIME) R Tafirout (lead) 8 (technical)
rioject team	 Mer-1. M. Vetterin (510) H. Kurchaninov, B. Vachon (McGill) (lead), 1 LAr: P. Keeler (Victoria), L. Kurchaninov, B. Vachon (McGill) (lead), 1
	(scientific) 2 (technical)
	ITK (Vancouver/Western Site): P. Stelzer (SEU), N. Hessey (lead), 2 (ccientific)
	7 (tochnical)
	ITK (Toronto/Eastern Site): P. Touscher (IPP/Toronto), T. Koffas (Carleton)
	(lead) 3 (scientific) 6 (technical)
	NSW/(TRILIME): O Stalzer-Chilton Trigger (lead) 2 (scientific) 6 (technical)
	 NSW (Carleton): L. Heilman (Carleton). A. Belleriye (Carleton) (lead). 2
	(scientific) 8 (technical)
	NSW/(McGill): B. Vachan (McGill) (lead), 1 (scientific), 1 (technical)
	 NSW (NCOII). B. Vachon (MCOII) (IEad), I (Scientific), I (Eccinical) NSW ATLAS sTGC Project lead: P. McPherson (IPD/Victoria)
	 Tier-1 CEI lead M. Vetterli (SEI / TRILIME)
	 Phase I CEI lead G. Oakham (Carleton/TRILIME)
	 Phase 2 CEI lead P. Krieger (Toronto)
Project timeline	 ATLAS Phase 1 ungrades: 2013-2021
	 ATLAS Phase 2 upgrades: 2016-2026
	 ATLAS Tier-1 Data Centre: 2007-2021 (with further upgrades until 2035)
Other	The LHC will complete its 4-year 13-TeV physics run ("run 2") in late 2018. As of
information	July 2018, the LHC has delivered over 150/fb of data to the ATLAS experiment.
	ATLAS has now published over 740 papers based on collision data. P. Savard
	(TRIUMF/Toronto) serves as the elected ATLAS Physics Coordinator from
	October 2018. The TRIUME group is actively involved in a number of flagship
	analyses in ATLAS which include the characterization of the Higgs boson and
	searches for New Physics.

Project # 4

Project name	Ultracold Neutron Facility (UCN) – TUCAN collaboration	
Collaborator	C. Bidinosti, B. Jamieson, R. Mammei, J. Martin (co-spokesperson) (Winnipeg), J.	
	Birchall, M. Gericke, J. Mammei (Manitoba), E. Korkmaz (UNBC), K. Madison, T.	
	Momose (UBC), C. Davis, B. Franke, P. Giampa, A. Konaka, F. Kuchler, T. Lindner, L.	
	Lee, R. Matsumiya, R. Picker, E. Pierre, W. Ramsay, W. Schreyer, Wi. Van Oers	
	(TRIUMF), S. Kawasaki, Y. Makida, K. Mishima, T. Okamura, Y. Watanabe (KEK), T.	
	Kikawa (Kyoto University), M. Kitaguchi, H. Shimizu (Nagoya University), K.	
	Hatanaka (co-spokesperson), H. Ong, I. Tanihata (RCNP, Osaka),	
Project	The TUCAN collaboration aims to build a world-leading ultracold neutron (UCN)	
description	facility and to commission an experiment capable of detecting a neutron electric	
	dipole moment (EDM) of magnitude 10 ⁻²⁷ e-cm or less within 400 beam-on days. A	
	second experimental port shall also be available to create a user facility for other	
	fundamental neutron physics experiments.	
Project value	 Ultracold Neutron facility: \$10.9M 	
	 Ultracold Neutron Electric Dipole Moment Experiment: \$15.7M 	
Project team	Principal Investigator: Jeffery Martin - Project Leader (TRIUMF): Ruediger Picker -	
	Project Leader (KEK): Shinsuke Kawasaki - Project Manager: Chris Gibson -	
	Technical Coordinator: Beatrice Franke - Project Engineer: Cam Marshall -	
	Experimental Safety Coordinator: Chuck Davis	
	The total number of scientific and technical staff involved, including collaborators,	
	is 42, including 13 from TRIUMF.	
Project timeline	 Ultracold Neutron facility: 2011-2018 	
	 Ultracold Neutron Electric Dipole Moment Experiment: 2018-2023 	
Other	 Expected new knowledge gained: detection of a neutron electric dipole 	
information	moment would be a historic achievement and could contribute to solving the	
	matter-anti-matter asymmetry puzzle of the Universe	
	 Expected publications: several instrument and development papers 	
	(beamline, cold neutrons, UCN source, EDM experiment), high-impact physics	
	result papers on EDM preliminary and final results	
	 Additional capacity: A Very-Cold-Neutron beamline will also be built for 	
	researchers interested in performing experiments on VCNs	

Project #	ŧ 5
-----------	-----

Project name	ALPHA-g	
Collaborator	ALPHA-Canada: R. Thompson (Calgary), M. Hayden (SFU), M. Fujiwara, D.Gill, A.	
	Olin, (TRIUMF), W. Hardy, T. Momose (UBC), S. Menary (York)	
Project	Project ALPHA (Antihydrogen Laser Physics Apparatus) is an international	
description	collaboration, based at CERN. The goal of the ALPHA-g experiment is first to	
	observe the free fall of antihydrogen in the gravitational field of the Earth, and	
	then to study the process precisely to see if there is any difference in the	
	gravitational behaviour of matter and antimatter. The heart of the ALPHA-g	
	system is a cryogenic and ultra-high vacuum vertical trapping volume, roughly	
	two metres long, in which experiments would be performed. This is equipped	
	with Penning trap electrodes (to manipulate positrons and antiprotons, and	
	create anti-H atoms), optics (for laser cooling anti-H atoms, creating an "atomic	
	fountain", and for development towards anti-atomic interferometry), and	
	microwave resonators (for hyperfine spectroscopy experiments and state	
	manipulation). TRIUMF is responsible for several key components: a radial Time	
	Projection Chamber (rTPC) to track pion tracks from antiproton annihilation with	
	a vertical position resolution of several mm; Barrel Scintillators (BS) to veto	
	cosmic rays; and ancillary systems such as external scintillators. Both the rTPC	
	and the BS have been delivered to CERN in August 2018, and are currently being	
	tested at CERN.	
Droject velue	\$20 AM	
Project value	\$20.4W	
Project team	TRIUME Lead researcher: Makoto Eujiwara, TRIUME Project Manager: Pierre	
	Amaudruz: No. of Scientists & Faculty: 5: Technical staff: ~10: Postdocs/RA: ~6:	
	Grad & undergrad students: ~5	
Proiect timeline	2016-2020	
Other information	The ALPHA-g trap is the antimatter equivalent of Newton's apple tree.	
	Successful observation of the initial antihydrogen free fall, and subsequent	
	precision measurements, would have a historic significance, since no one has	
	directly observed antimatter falling.	
	· · · · · · · · · · · · · · · · · · ·	
	Canadians make up more than 1/3 of the ALPHA collaboration, which is made	
	of over 40 scientists from 14 institutions in 8 countries.	

Project	#	6
---------	---	---

Project name	GRIFFIN
Collaborator	C. Svensson, P. Garrett (Guelph), A. Chen (McMaster), J. Leslie, C. Andreoiu, K.
	Starosta (SFU), G. Ball, D. Bishop B. Davids, I. Dillmann, A. Garnsworthy, G.
	Hackman, R. Kruecken, C. Pearson (TRIUMF)
Project	Design, construct, commission and operate a state-of-the-art new high-purity
description	germanium (HPGe) gamma-ray spectrometer for decay spectroscopy research
	with low-energy radioactive ion beams.
Project value	 GRIFFIN: \$8.98M
	 GRIFFIN shields: \$1.42M
Project team	C. Svensson (Principal Investigator); A. Garnsworthy (Director of GRIFFIN
	activities and Project Coordinator). Around 20 TRUMF personnel contributed
	time to GRIFFIN. The GRIFFIN collaboration includes over 100 researchers from
	10 countries.
Project timeline	 GRIFFIN, 2011-2015.
	 GRIFFIN shields, 2016-2018.
Other information	 The project was completed on time and on budget.
	 GRIFFIN is the most powerful HPGe array dedicated to decay spectroscopy
	studies worldwide. The gamma-gamma coincidence efficiency is a factor
	300 higher than for the 8pi spectrometer that GRIFFIN replaces.
	 Over 60 rare-isotope beam species have been delivered to GRIFFIN from
	ISAC and the data is now undergoing data analysis within the collaboration.
	 The spectrometer supports a diverse research program in the areas of
	nuclear structure, nuclear astrophysics and fundamental symmetries.

Project # 7	
Project name	M9H upgrade
Collaborators	J. Brewer, D. Fleming, R. Kiefl, A. MacFarlane (UBC), K. Ghandi (Guelph), G. Luke (McMaster), A. Bianchi (U. Montreal), J. Sonier (PI), P. Percival (SFU), J. Quilliam (U. Sherbrooke), J. Sugiyama (Toyota CRDL Inc.), T. Uemura (Columbia), S. Dunsinger, K. Kojima, S. Kreitzman, I. McKenzie (TRIUMF)
Project description	 The muon beam facilities of TRIUMF will be expanded by the addition of a high momentum muon decay channel, M9H (formerly known as M9B), and a service-oriented surface muon channel, M9A. There are three separate but highly integrated parts: Repair of the M9/T2 vacuum seal, in alignment with TRIUMF's commitment for its 5 Year Plan 2015-2020. Completion of the surface muon channel M9A and installation of a fixed 3 T µSR spectrometer. Redevelopment of M9B into a new high momentum muon channel M9H, with associated cryogenic facilities for the superconducting decay section and specialized end station spectrometer infrastructure to maximize high impact research. This new infrastructure will uniquely provide a significant physical parameter space (high pressures + ultra-low temperature + high magnetic fields on M9H) and highly versatile (low temperatures + high fields + Muons-on-Request on M9A) facility with a focus on highly efficient sample characterization for the increasingly impact and head non avent (in uED) usor community.
Project value	\$10.7 M
Project team	S. Kreitzman (Project Leader); Ch. Gibson (Interim Project Manager); Dedicated CMMS facility staff inclusive of six Scientists (D. Arseneau, S. Dunsiger, B. Hitti, K. Kojima, I. McKenzie, G. Morris) and three technicians (R. Abasalti, M. McLay, D. Vyas); Supporting TRIUMF professional staff (engineering / 75 months, technical / 40 months); Major User Community Collaborators (above)
Project timeline	 M9/T2 fix: 2017-2019
	 M9A operations: 2020
Other information	M9H: design & construction 2018-2022: operations 2023 This project will provide Canadian and international users of the CMMS µSR facility with unmatched capabilities for the study of quantum systems under normal and extreme conditions. Quantum mechanics is fundamental to materials being developed for transformational technologies. It is also central to physical chemistry, underlying the electronic structure of atoms and molecules and the dynamics of chemical reactions. Specifically, applied science applications related to energy storage, green chemistry and the support of next-generation supercritical water-cooled nuclear reactors are all encompassed by project's research scope. The planned infrastructure provides the necessary tools to contribute to strategic quantum, energy and environmental research priorities in Canada, to nurture innovation partnerships, and to build on the CMMS's proven success developing innovative uSR methods for leading-edge fundamental and applied research.

Pro	iect	#	8
	,		_

Project name	EMMA
Collaborator	D. Muecher (Guelph), A. Chen (McMaster), C. Andreoiu, K. Starosta (SFU), M. Alcorta, B. Davids (PI), I. Dillmann, A. Garnsworthy, G. Hackman, D. Hutcheon, R. Kruecken, C. Ruiz (TRIUMF), C. Diget (U. York, UK), A. Laird (U. Edinburgh, UK)
Project description	EMMA, the Electromagnetic Mass Analyser, is a recoil mass spectrometer undergoing the final stages of commissioning for use at the ISAC-II facility at TRIUMF. It simultaneously provides high first-order mass resolving power (500) and large angular (17 msr), mass/charge (±4%), and kinetic energy (±20%) acceptances. These characteristics make it very well suited to the study of nuclear structure and nuclear astrophysics using nuclear reactions induced by the heavy radioactive ion beams available at energies up to and above the Coulomb barrier at ISAC-II. The high efficiency recoil detection and identification capability of EMMA enables unique experiments in nuclear astrophysics and nuclear structure in conjunction with the gamma ray spectrometer TIGRESS, its integrated plunger TIP, and the charged particle detector array SHARC.
Project value	\$3.1M
Project team	The principal investigator Barry Davids works closely with 3 graduate students and postdocs, an expert technician, and TRIUMF's ISAC gas target and detector physicist to operate and maintain the spectrometer.
Project timeline	The spectrometer has been built, tested, and characterized; commissioning will be completed in 2018 when the first electrostatic deflector is conditioned to the high voltages already reached by the second.
Other information	The spectrometer has proven its capability to separate and identify the products of nuclear fusion reactions induced by radioactive ion beams at Coulomb barrier energies. Technical publications have been written, submitted, and published. First scientific results are anticipated next year.

Project # 9	
Project name	High Luminosity LHC
Collaborator	R. Baartman, D. Kaltchev, O. Kester, R. Laxdal (PI) (TRIUMF), G. Arduini, O.
	Capatina, L. Rossi (CERN) – for the HL-LHC collaboration
Project description	TRIUMF will deliver five cryomodules, each containing two SRF crab cavities, as
	a Canadian contribution to the high luminosity upgrade of the LHC (HL-LHC).
	The cavities will be supplied by CERN. The cryomodule design and assembly is
	led by TRIUMF with significant interaction with Canadian industry.
	TRILIME is also contributing to LHC and HL-LHC beam performance
	development with emphasis on evaluating numerically the dynamic aperture
	under the influence of heam-heam effects for a variety of setuns
Project value	Crab cavity cryomodules: \$12M
··· , -····	 Beam physics: \$500k
Project team	Lead researcher for cryomodule: Robert Laxdal. The project will be carried out
	by TRIUMF's SRF team (4 professionals and 4 technicians) with support from
	mechanical engineering and the cryogenics group.
	Lead researchers for beam physics: Dobrin Kaltchev and Rick Baartman
Project timeline	The projects stretch from the beginning of 2017 through to Dec. 2024. The first
	crab cavity cryomodule would be completed in mid 2022 with two per year in
	2023 and 2024. Beam physics investigations are ongoing and extend to UFO
	related beam losses in LHC.
Other information	SRF/RF and cryomodules are cutting edge accelerator technology, essential to
	particle & nuclear physics, materials science and health. Canada, through the
	TRIUMF SRF group, is uniquely positioned to provide the cryomodule to the
	HL-LHC project. The engagement in a major international project ensures
	Canadian leadership in this field and ensures training of young personnel. The
	technologies have impacts across many areas of society, such as material
	industries, precision machining, electron beam welding, and cleanroom
	techniques. Developing Canadian industry in cryomodule fabrication will
	elevate and enhance its role in this competitive international area.
	Beam physics understanding is crucial for modern high-performance
	accelerators, as well as for beam transport and manipulation systems. As new
	particle accelerators operate in new regimes of beam current, beam power
	and beam energy, a detailed understanding of the interaction of the charges in
	intense beams with the environment in the machine and with other beam
	bunches, is mandatory for a safe beam operation. Investigations in this area
	will enable more powerful accelerators for industrial applications and
	fundamental research.